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Abstract. Let H and K be infinite dimensional Hilbert spaces, while

B(H) and B(K) denote the algebras of all linear bounded operators on H
and K, respectively. We characterize the forms of additive mappings from

B(H) into B(K) that preserve the nonzero idempotency of either Jordan

products of operators or usual products of operators in both directions.
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1. Introduction

The study of maps on operator algebras preserving certain properties or

subsets is a topic which attracts much attention of many authors. See the

references.

Some problems are concerned with preserving a certain property of usual

product or other products of operators. For example see [4, 6− 10, 13, 15, 16].

Let R and R′ be two rings and ϕ : R → R′ be a map. Denote by PR and

PR′ the set of all idempotent elements of R and R′, respectively. The triple

Jordan product and the Jordan product of two elements A and B are defined as
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ABA and 1
2 (AB+BA), respectively. We say that ϕ preserves the idempotency

of product of two elements, the idempotency of triple Jordan product of two

elements and the idempotency of Jordan product of two elements, whenever

we have

AB ∈ PR ⇒ ϕ(A)ϕ(B) ∈ PR′ ,

ABA ∈ PR ⇒ ϕ(A)ϕ(B)ϕ(A) ∈ PR′

and
1

2
(AB +BA) ∈ PR ⇒ 1

2
(ϕ(A)ϕ(B) + ϕ(B)ϕ(A)) ∈ PR′ ,

respectively. Let H and K be infinite dimensional Hilbert spaces, while B(H)

and B(K) denote the algebras of all linear bounded operators on H and K,

respectively. In [8], authors characterized some forms of unital surjective maps

on B(X) preserving the nonzero idempotency of product of operators in both

directions. Also in [15], authors characterized some forms of linear surjective

maps on B(X) preserving the nonzero idempotency of either products of oper-

ators or triple Jordan products of operators.

In this paper, we determine a form of additive mapping ϕ : B(H) → B(K)

such that the range of ϕ contains all minimal idempotents and I and also ϕ

preserves the nonzero idempotency of Jordan products of operators in both

directions. Moreover, we determine a form of surjective additive mapping ϕ :

B(H) → B(K) that preserves the nonzero idempotency of usual products of

operators in both directions. Our main result are as follows.

Theorem 1.1. Let H and K be two infinite dimensional real or complex Hilbert

spaces and ϕ : B(H) → B(K) be an additive map such that the range of ϕ con-

tains all minimal idempotents and I. If ϕ preserves the nonzero idempotency of

Jordan products of operators in both directions, then ϕ either annihilates min-

imal idempotents or there exists a bounded linear or conjugate linear bijection

A : H → K such that ϕ(T ) = ξATA−1 for every T ∈ B(H) or ϕ(T ) = ξAT tA−1

for every T ∈ B(H), where ξ = ±1 ( in the case that H and K are real, A is

linear).

Theorem 1.2. Let H and K be two infinite dimensional complex Hilbert spaces

and ϕ : B(H) → B(K) be a surjective additive map. If ϕ preserves the nonzero

idempotency of products of operators in both directions, then there exists a

bounded linear or conjugate linear bijection A : H → K such that ϕ(T ) =

ξATA−1 for every T ∈ B(H) or ϕ(T ) = ξAT tA−1 for every T ∈ B(H), where

ξ = ±1.

2. Proofs

In this section we prove our results. First we recall some notations. Let X

and Y be Banach spaces. Recall that a standard operator algebra on X is a

norm closed subalgebra of B(X) which contains the identity and all finite rank
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operators. Denote the set of all idempotent operators of B(H) by I(H) and

the Jordan product of A,B by A ◦ B = 1
2 (AB + BA). Also denote the dual

space X by X∗.

For every nonzero x ∈ X and f ∈ X∗, the symbol x⊗ f stands for the rank

one linear operator on X defined by

(x⊗ f)y = f(y)x. (y ∈ X)

If x, y ∈ H, then x⊗ y stands for the rank one linear operator on H defined by

(x⊗ y)z =< z, y > x (z ∈ H)

where < z, y > denotes the inner product of z and y. We need some lemmas

to prove our main result. Throughout this paper, A ⊆ B(X) and B ⊆ B(Y )

are standard operator algebras.

The proof of the following lemma is similar to that of Lemma 2.2 in [15].

Lemma 2.1. [15] Let ϕ : A → B be an additive map such that preserves the

nonzero idempotency of Jordan products of operators. If N ∈ A is a finite rank

operator such that N2 = 0, then ϕ(N)4 = 0.

Lemma 2.2. Let ϕ : A → B be an additive map. Then the following statements

hold.

(i) If ϕ preserves the nonzero idempotency of Jordan products of operators,

then ϕ is injective.

(ii) If I ∈ rngϕ and ϕ preserves the nonzero idempotency of Jordan products

of operators in both directions, then ϕ(I) = I or ϕ(I) = −I.

Proof. (i) Assume ϕ(A) = 0. We assert that A satisfies a quadratic polynomial

equation. Otherwise, by the discussion in [11], there exists an x ∈ X such

that x, Ax and A2x are linear independent. Then there is a linear functional

f such that f(x) = f(A2x) = 0 and f(Ax) = 2, because dimX ≥ 3. Setting

B = x⊗ f , we have A ◦B ∈ PA \ {0}, implying that

ϕ(A) ◦ ϕ(B) ∈ PB \ {0}.

This is a contradiction, because ϕ(A) ◦ ϕ(B) = 0. So by the discussion in [11],

A satisfies a quadratic polynomial equation.

Assume on the contrary that A is a nonzero operator. For any B ∈ A we

have

ϕ(A) ◦ ϕ(B) = 0.

However, there exists B = x ⊗ f such that A ◦ B = 1
2Ax ⊗ f + 1

2x ⊗ fA is a

nonzero idempotent, a contradiction. We construct such B.

By the above assertion, A satisfies a quadratic polynomial equation. The

spectrum of such A consists only of eigenvalues. If A2 ̸= 0, then A has a

nonzero eigenvalue λ, because in this case there exist r, s ∈ C such that rs ̸= 0

and λ satisfies a quadratic polynomial equation α2 = rα + s. Since rs ̸= 0,
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α2 = rα + s has a nonzero root. Let x be its eigenvector. Choose a bounded

functional f with f(x) = 1
λ to form B = x⊗ f with the desired properties.

The remaining case is A2 = 0. Since A is nonzero, we can find a vector

x so that Ax ̸= 0 and a functional f with f(x) = 0 and f(Ax) = 1 to form

B = x⊗ f with the desired properties. The proof is complete.

(ii) Since I ∈ rngϕ, there exists a nonzero operator U ∈ A such that ϕ(U) =

I. We show that U = I or −I. We have ϕ(U) ◦ ϕ(U) ∈ PB \ {0}. Hence we

obtain

(1) U2 = U ◦ U ∈ PA \ {0}.

This implies that for any x ∈ X, x, Ux and U2x are linear dependent. Thus

U satisfies a quadratic polynomial equation, by the discussion in [10]. This

together with (1) yields that there exist a, b ∈ C such that we have

(2) U2 = aU + bI.

From (1) and (2), we obtain the answers (0, 1), (1, 0) and (−1, 0) for (a, b)

which imply that U2 = I, U2 = Uand U2 = −U .

Let U2 = U . We assert that U = I. Assume on the contrary that U ̸= I.

From U ◦ I ∈ PA \ {0}, we obtain

(3) ϕ(I) = I ◦ ϕ(I) ∈ PB \ {0}.

On the other hand, there exists an idempotent operator T such that U − T is

not idempotent. In fact, U + S − I isn’t idempotent, where S = I − T . Thus

(U + S − I) ◦ I = U + S − I ̸∈ PA \ {0}

which implies that

ϕ(U + S − I) ◦ ϕ(I) ̸∈ PB \ {0}

This together with (3) yields that

ϕ(I) ◦ ϕ(S) ̸∈ PB \ {0}

which implies that

S = I ◦ S ̸∈ PA \ {0}.

This is a contradiction, because S is idempotent. So the proof of assertion is

completed.

With a similar proof, the assumption U2 = −U yields that U = −I.

Now let U2 = I. We assert that U is a multiple of I. Assume on the contrary

that U is a non-scalar operator. Since I and U are linear independent, there

is a nonzero vector x ∈ X such that x and Ux are linear independent. Hence

there exists f ∈ X∗ such that f(x) = 0 and f(Ux) = 2. Setting B = x⊗ f , we

obtain

U ◦B ∈ PA \ {0}
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which implies that

ϕ(B) = ϕ(U) ◦ ϕ(B) ∈ PB \ {0}.

This is a contradiction, because B is a nilpotent such that B2 = 0 and so by

Lemma 2.1, ϕ(B) is a nilpotent operator. So the proof of assertion is completed.

By the proved assertion, there exists a nonzero complex number λ such that

U = λI. Since U2 = I, we obtain λ2 = 1 and this completes the proof. □

Theorem 2.3. [5] Let H and K be two infinite dimensional real or complex

Hilbert spaces and ϕ : B(H) → B(K) be an additive map preserving idempotents.

Suppose that the range of ϕ contains all minimal idempotents. Then ϕ either

annihilates minimal idempotents or there exists a bounded linear or conjugate

linear bijection A : H → K such that ϕ(T ) = ATA−1 for every T ∈ B(H) or

ϕ(T ) = AT tA−1 for every T ∈ B(H) ( in the case that H and K are real, A is

linear).

Proof of Theorem 1.1. Since by Lemma 2.2, ϕ(I) = I or ϕ(I) = −I, from

P = I ◦ P ∈ I(H) \ {0} we obtain that ϕ(P ) or −ϕ(P ) belongs to I(H) \ {0}.
This together with ϕ(0) = 0 implies that ϕ or −ϕ preserves the idempotent

operators in both directions. Hence the forms of ϕ follows from Theorem 2.3.

Proposition 2.4. Let dimH ≥ 3. Let A be an arbitrary operator of B(H)

and P be a rank one idempotent operator. Then A ∈ C∗P if and only if for

every T ∈ B(H) such that PT ∈ I(H) \ {0} we have AT ̸∈ I(H) \ {0}, where
C∗ = C \ {0, 1}.

Proof. If A ∈ C∗P , then there exists a λ ∈ C∗ such that A = λP . hence it is

trivial that for every T such that PT ∈ I(H) \ {0} then λPT ̸∈ I(H) \ {0}.
Conversely, Let A ̸∈ C∗P . Since P is rank one, by [2], there exists either

an x ∈ H such that Px and Ax are linear independent or an x ∈ H and linear

independent vectors z1, z2 ∈ H such that P = x⊗ z1 and A = x⊗ z2.

If Px and Ax are linear independent, then there exists y ∈ H such that

< Px, y >=< Ax, y >= 1, because dimH ≥ 3. Setting T = x⊗ y follows that

PT ∈ I(H) \ {0} and also AT ∈ I(H) \ {0}. This is a contradiction.

If P = x ⊗ z1 and A = x ⊗ z2, then there exist y, z3 ∈ H such that <

x, z3 >=< y, z1 >=< y, z2 >= 1. Setting T = y ⊗ z3 follows that PT ∈
I(H) \ {0} and also AT ∈ I(H) \ {0}. This is a contradiction.

These contradictions yields that A ∈ C∗P and this completes the proof. □

Lemma 2.5. Let ϕ : A → B be a surjective additive map such that

AB ∈ PA \ {0} ⇔ ϕ(A)ϕ(B) ∈ PB \ {0}

for every A ∈ A and B ∈ B. Then the following statements hold.

(i) ϕ(I) = I or ϕ(I) = −I.
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(ii) If A = B(H) with dimH ≥ 3 and B = B(K), then ϕ(CP ) ⊆ Cϕ(P ), for

every rank one idempotent P .

Proof. (i) It is proved by using Lemma 2.1 and similar to the proof of Lemma

2.2 in [13].

(ii) By (i), ϕ(I) = I or ϕ(I) = −I. Since ϕ(0) = 0, we can conclude from

(i) that ϕ or −ϕ preserves the idempotent operators in both directions. By

Lemma 2.6 in [14], ϕ or −ϕ preserves the rank one idempotent operators in

both directions. If A ∈ C∗P , then by Proposition 2.4, for every T ∈ B(H)

such that PT ∈ I(H) \ {0} we have AT ̸∈ I(H) \ {0} which by surjectivity

of ϕ imply that for every T ′ ∈ B(H) such that ϕ(P )T ′ ∈ I(H) \ {0} we have

ϕ(A)T ′ ̸∈ I(H) \ {0}. Since ϕ(P ) is a rank one idempotent, by Proposition

2.4 we can conclude that ϕ(A) ∈ C∗ϕ(P ). This together with (i) and ϕ(0) = 0

follows that ϕ(CP ) ⊆ Cϕ(P ). This completes the proof. □

Proposition 2.6. Let H and K be two infinite dimensional real or complex

Hilbert spaces and ϕ : B(H) → B(K) be an additive map. If ϕ preserves the

idempotent operators, then ϕ preserves the square zero operators.

Proof. Let N ∈ B(H) be a square zero operator. Then we have H = kerN⊕M

for some closed subspace M of H. Thus by this decomposition N has the

following operator matrix

N =

(
0 N1

0 0

)
.

If

A =

(
I 0

0 0

)
thenA+nN ∈ I(H) for every natural number n. It implies that ϕ(A)+nϕ(N) ∈
I(K) for every natural number n. That is,

ϕ(A) + nϕ(N) = ϕ(A)2 + n(ϕ(A)ϕ(N) + ϕ(N)ϕ(A)) + n2ϕ(N)2

for all n. Setting n = 1 and n = 2 yield

ϕ(N) = ϕ(A)ϕ(N) + ϕ(N)ϕ(A) + ϕ(N)2,

2ϕ(N) = 2(ϕ(A)ϕ(N) + ϕ(N)ϕ(A)) + 4ϕ(N)2

which imply that ϕ(N)2 = 0 and this completes the proof. □

Theorem 2.7. [1] Let H and K be two infinite dimensional complex Hilbert

spaces and ϕ : B(H) → B(K) be a surjective additive map such that ϕ(CP ) ⊆
Cϕ(P ) holds for every rank one operator P . Then ϕ preserves square zero in

both directions if and only if there exists a nonzero scalar c and a bounded

linear or conjugate linear bijection A : H → K such that ϕ(T ) = cATA−1 for

every T ∈ B(H) or ϕ(T ) = cAT tA−1 for every T ∈ B(H).
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Proof of Theorem 1.2. By a similar proof to that of Lemma 2.3 in [15],

we obtain that ϕ is injective. Since ϕ(0) = 0, we can conclude from part

(i) of Lemma 2.5 that ϕ or −ϕ preserves the idempotent operators in both

directions. This together with Proposition 2.6 and the injectivity of ϕ implies

that ϕ preserves the square zero operators in both directions. Moreover, by

part (i) of Lemma 2.5, ϕ(CP ) ⊆ Cϕ(P ), for every rank one idempotent P .

Therefore the forms of ϕ follow from Theorem 2.7. The scalar c in Theorem

2.7 is the scalar that ϕ(I) = cI (by the proof of this theorem in [2]). This

together with the part (i) of Lemma 2.5 completes the proof.
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